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Abstract

Foundation models and their checkpoints have significantly
advanced deep learning, boosting performance across vari-
ous applications. However, fine-tuned models often struggle
outside their specific domains and exhibit considerable redun-
dancy. Recent studies suggest that pruning fine-tuned models
can mitigate catastrophic forgetting, reduce interference when
merging model parameters across tasks, and improve com-
pression efficiency. In this context, developing an effective
pruning strategy for fine-tuned models is crucial. Leveraging
the advantages of the task vector mechanism, we preprocess
fine-tuned models by calculating the differences between them
and the original model. Recognizing that different task vec-
tor subspaces contribute variably to model performance, we
introduce a novel method called Neural Parameter Search for
Pruning (NPS-PRUNING). This method enhances pruning effi-
ciency by searching through neural parameters of task vectors
within low-rank subspaces. Our method has three key applica-
tions: enhancing knowledge transfer through pairwise model
interpolation, facilitating effective knowledge fusion via model
merging, and enabling the deployment of compressed models
that retain near-original performance while significantly reduc-
ing storage costs. Extensive experiments across vision, NLP,
and multi-modal benchmarks demonstrate the effectiveness of
our approach, resulting in substantial performance gains.

1 Introduction
In recent years, with the release of foundational models and
the proliferation of associated checkpoints, the field of ma-
chine learning has undergone a paradigm shift. This shift
has significantly enhanced the performance of downstream
applications. While fine-tuning pre-trained models (Worts-
man et al. 2022; Choshen et al. 2022; Liu et al. 2022a) has
become common practice, these models often struggle with
generalization and perform poorly outside their specific do-
mains. Consequently, improving knowledge transfer from
pre-trained to fine-tuned models has become a recent research
focus (Devlin et al. 2018). Consequently, recent research has
increasingly focused on improving knowledge transfer, fu-
sion, and compression by leveraging the parameters of the ini-
tial pre-trained model. Model Tailor (Zhu et al. 2024) prunes
fine-tuned models and combines them with the original model
to reduce catastrophic forgetting. Task Arithmetic (Ilharco
et al. 2023b) creates task vectors from the differences be-
tween fine-tuned and pre-trained models, which are then
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Figure 1: Knowledge transfer, fusion, and compression are
enhanced with the assistance of pre-trained model parameters.
The fine-tuned model is effectively represented as a combina-
tion of the pre-trained model and pruned task vectors, leading
to better knowledge retention.

merged (Du et al. 2024; Jin et al. 2023; Singh and Jaggi 2020;
Wan et al. 2024; Li et al. 2023b) to improve knowledge fusion
and multi-tasking. Additionally, TALL-masks (Wang et al.
2024) compresses checkpoints by localizing task information
within task vectors.

All these research efforts on knowledge transfer with avail-
able pre-trained parameters depend on a crucial preprocessing
step: pruning the fine-tuned models, as shown in Figure 1.
Compared to pre-trained models, fine-tuned models often
contain redundant parameters. Pruning these models can en-
hance the efficiency of knowledge representation. Pruning
fine-tuned model sets offers three main advantages: First,
it reduces conflicts between fine-tuned models and the pre-
trained model during knowledge transfer, thereby enhancing
resilience to catastrophic forgetting. Second, it minimizes
interference among fine-tuned models during fusion, improv-
ing multi-task generalization capabilities. Finally, pruning
finetuned models can reduce storage costs while maintaining
multi-task performance. However, despite extensive research
on model pruning in the context of compression (Liang et al.
2021; Yu et al. 2023b; Xia, Zhong, and Chen 2022), there is
a relative scarcity of studies focused specifically on pruning
fine-tuned models. To address this gap, we propose a novel
method called Neural Parameter Search for Pruning (NPS-
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Figure 2: Performance of ViT-B/32 models on a specific task
(SUN397 dataset). Different subspaces of neural parameters
within the task vector contribute differently to the perfor-
mance of the fine-tuned model.

PRUNING) and design an adapted approach to apply pruned
fine-tuned models in scenarios such as knowledge transfer,
fusion, and compression. Specifically, we leverage the advan-
tages of the task vector mechanism and preprocess fine-tuned
models by calculating the difference between them and the
original model. Recognizing that different task vector sub-
spaces contribute variably to model performance, as shown
in Figure 2, we search through the neural parameters within
low-rank subspaces of task vectors. We partition the fine-
tuned parameters into a set number of subspaces based on
their magnitude, use evolutionary algorithms to assign new
weights to different subspaces, and update the weights based
on the model’s performance on calibration datasets. This
process avoids the need for gradient calculations, offering
lightweight and efficient advantages.

We validated the effectiveness of our method in three dif-
ferent application scenarios. First, we performed interpola-
tion between the pruned models obtained through NPS and
the pre-trained models to reduce the forgetting of the pre-
trained models. We tested the performance of the LLaVa
model on the benchmark of multiple large language models
and achieved performance that exceeded previous methods.
Additionally, we demonstrated that weight averaging of mul-
tiple NPS-compressed fine-tuned models can achieve model
fusion. We evaluated our approach across a range of NLP and
vision tasks using various models, such as T5 (Raffel et al.
2020), ViT (Dosovitskiy et al. 2020), and Llama2(Touvron
et al. 2023). We also assessed its ability to fuse multiple PEFT
adapters(Liu et al. 2022b; Hu et al. 2022). All experiments
showed significant improvements over previous state-of-the-
art methods, notably achieving a 4.3% performance increase
with the T5-base model. Finally, for deployment, specifying
different compressed models allowed us to maintain almost
the original fine-tuned performance while significantly re-
ducing storage requirements. We conducted extensive experi-
mental testing and achieved notable improvements in storage
efficiency, particularly with a 40% increase in compression
efficiency in experiments across 8 vision tasks.

Our contributions can be summarized in the following
four points:

1. We reveal the importance of pruning fine-tuned
models and highlight the limitations of previous methods.

2. We propose Neural Parameter Search (NPS) for
efficiently pruning fine-tuned models.

3. Based on the pruned fine-tuned models, we provide a
simple and versatile method suitable for multi-task model
fusion, compression, and robust knowledge transfer.

4. Experimental results demonstrate that our method
significantly improves performance in various knowledge
transfer scenarios.

2 Related Work
2.1 Knowledge Transfer, Fusion and Compression
In the realms of knowledge transfer, model fusion, and
compression, foundational studies have driven significant
progress. (Wortsman et al. 2022) enhanced zero-shot learn-
ing by fine-tuning pre-trained models with minimal data,
while (Houlsby et al. 2019) improved resource efficiency
through parameter-efficient transfer learning. (Chen et al.
2020) advanced model compression and fusion using con-
trastive learning in unsupervised settings, collectively mark-
ing major strides in model efficiency and robustness.

Recent years have seen the emergence of innovative meth-
ods for enhancing performance and efficiency across tasks
when both pre-trained and fine-tuned models are available.
Fisher-weighted averaging (Matena and Raffel 2022) uses
an information-theoretic approach to assess parameter impor-
tance, while RegMean (Jin et al. 2022) offers a closed-form
solution for merging parameters through local linear regres-
sion. Task Arithmetic (Ilharco et al. 2023a), PEM (Zhang
et al. 2023a), and TIES-Merging (Yadav et al. 2024) enhance
model fusion through parameter composition, thereby im-
proving model adaptability. Model Evolver (Du et al. 2024)
dynamically evolves model parameters, while Model Tai-
lor (Zhu et al. 2024) mitigates catastrophic forgetting in
multimodal tasks through model patching, decoration, and
post-training. Tall-masks (Wang et al. 2024) offers efficient
masking for model compression, and MATS (Tam, Bansal,
and Raffel 2024) employs a conjugate gradient method to
match task parameter subspaces.

In conclusion, our research builds on the approach of lever-
aging pre-trained models, as this strategy offers superior
transfer performance and efficiency at a lower cost. In conclu-
sion, our research focuses on leveraging pre-trained model
parameters, as this approach provides better transfer perfor-
mance and greater efficiency at a lower cost.

2.2 Model Pruning
Model pruning can be broadly classified into two main ap-
proaches. The first approach encompasses traditional model
pruning techniques. This includes structured pruning meth-
ods such as SliceGPT (Ashkboos et al. 2024) and LLM-
pruner (Ma, Fang, and Wang 2023), as well as unstructured
pruning techniques like SparseGPT (Frantar and Alistarh
2023), Wanda (Sun et al. 2023), GRAIN (Yang et al. 2023),
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Figure 3: The framework of Neural Parameter Search enhances the efficiency of pruning fine-tuned models. This is achieved by
searching and reweighting the neural parameters of task vectors within low-rank subspaces.

GBLM-Pruner (Das, Ma, and Shen 2023), and OWL (Yin
et al. 2023).

The second approach focuses on pruning fine-tuned mod-
els given a pretrained model. For instance, Model Graft-
ing (Panigrahi et al. 2023) creates a mask to identify the most
critical parameters for a specific task by optimizing the target
task loss. TIES (Yadav et al. 2024) addresses interference
issues that arise after magnitude pruning. DARE (Yu et al.
2023b) aligns task vector parameters with the expected model
output by randomly selecting and rescales them. Model Tai-
lor (Zhu et al. 2024) produces a sparse mask based on salience
and sensitivity scores, while Talls Mask (Wang et al. 2024)
combines the merged model with an additional mask to lo-
calize task information, effectively reducing storage costs.

In this paper, we propose a novel pruning approach that is
simple, efficient, and robust by searching for weight coeffi-
cients within neural parameter subspaces.

3 Methodology
3.1 Problem Setting
Here, we consider knowledge transfer, fusion and compres-
sion of a set of tasks {T1, . . . , Tn} and various pre-trained
models like ViT (Dosovitskiy et al. 2021), T5 (Raffel et al.
2020), or Llama2 (Touvron et al. 2023). To begin, each pre-
trained model is optimized on task-specific data, which can
be performed either by fine-tuning the entire model or by
using a parameter-efficient fine-tuning (PEFT) method (Liu
et al. 2022b; Hu et al. 2022). During this process, the train-
able parameters θ were initialized with θpre (the pre-trained
state) and subsequently updated to θft (the fine-tuned state).

Recent research introduced the concept of task vectors (Il-
harco et al. 2023a), which has been applied in various knowl-
edge transfer, fusion, and compression tasks. For a specific
task T , the task vector τ ∈ Rd is defined as the difference be-
tween the fine-tuned weights θi and the pre-trained weights
θpre, i.e., τ = θ − θpre. This captures the changes during
the fine-tuning phase for each task-specific model. Building
on this idea, a pruned fine-tuned model θ̂ft can be obtained
by first deriving the pruned task vector τ̂ , as defined in the
equation below:

θ̂ft = θpre + τ̂ (1)

3.2 Neural Parameter Search for Pruning
Given that different parameter subspaces of task vectors con-
tribute variably to fine-tuning performance, we first decom-
posed the task vector τ into M independent parameter sub-
spaces qm by ranking the parameters based on their magni-
tude and then dividing them according to these ranks, sum-
marized as τ =

∑M
m=1 qm. Next, to enable more effective

pruning, we reallocated weights for each subspace to obtain
a new task vector:

τ =

M∑
m=1

wm ∗ qm (2)

. Initially, all weight coefficients were initialized to 1, after
which we used an evolutionary algorithm to search for a more
optimal set of weight coefficients. The optimization process
aims to find the best set {w1, . . . , wm}, seeking optimal vali-
dation accuracy, and ultimately maximizing performance on
calibration data with the adjusted fine-tuned model, as shown
in Figure 3.

In most of our experiments, we employed Covariance Ma-
trix Adaptive Evolution Strategies (CMA-ES) (Hansen and
Ostermeier 1996), a probabilistic, population-based optimiza-
tion algorithm. CMA-ES dynamically adjusts the search dis-
tribution through a covariance matrix, updating the mean and
covariance at each iteration to effectively exploit the struc-
ture of the search space for obtaining optimal candidate so-
lutions. When the evolutionary algorithm has approximately
converged, we combined the optimized weight coefficients
with the task vector and the pre-trained model to obtain an
adjusted model:

θft = θpre +

M∑
m=1

wm ∗ qm (3)

Finally, we pruned the fine-tuned model based on the magni-
tude of its adjusted parameters after the search. We define the
sparsity ratio as r, where 0 < r ≤ 1, and compute a mask m
to select the most important neural parameters. This mask is
derived using the following equation:

md =

{
1, if τd ≥ sorted(τ)[r ×D]

0, otherwise
(4)



0.02 0.06 0.10 0.15 0.20 0.25 0.30
Sparsity

50

55

60

65

70

75
Ac

cu
ra

cy
 [%

]

Finetuned
TIES
DARE
NPS-Pruning (ours)

Figure 4: Performance variations of different pruning meth-
ods with changes in sparsity ratio. Our NPS-PRUNING
method exhibits higher tolerance to varying levels of sparsity.

The final pruned fine-tuned model is then given by:

θ̂ft = θpre +m⊙ τ (5)

This final model can subsequently be applied to scenarios
such as knowledge transfer, fusion, and compression. To eval-
uate the pruning efficiency of the NPS-PRUNING method,
we applied it to a pre-trained vision model, ViT-B/32, which
was fine-tuned on various tasks. We then assessed the results
of different pruning methods on the respective benchmarks
for each task. The reported results are the average perfor-
mance across eight fine-tuned models under varying levels
of pruning sparsity, as illustrated in Figure 4. In comparison
with baseline methods like TIES (Yadav et al. 2024) and
DARE (Yu et al. 2023b), our findings indicated that when the
pruning sparsity ratio exceeds 0.2, most methods maintain
performance comparable to the fine-tuned models. However,
as the sparsity ratio drops below 0.2, accuracy tends to de-
cline rapidly. Notably, our NPS-PRUNING method demon-
strates greater tolerance to lower sparsity ratios, preserving
the original model’s accuracy even at a sparsity ratio of 0.04.

3.3 Applications
Building on the significant improvement in pruning efficiency
for fine-tuned models, we present three application scenarios
for our proposed NPS-PRUNING method in the context of
knowledge transfer, model fusion, and compression when
pre-trained models and task-specific data for fine-tuning are
available.

Knowledge Transfer. Fine-tuning language models on
new, unseen data often leads to a decline in performance
on the original tasks. Moreover, previous research (Zhu et al.
2024) indicates that fine-tuned models have low knowledge
representation efficiency, containing a large number of re-
dundant parameters that offer little benefit for new tasks.
Removing these redundant parameters can minimize interfer-
ence when integrating with the pre-trained model. Therefore,

pruning the fine-tuned model can enhance its resistance to
catastrophic forgetting during knowledge transfer. We pro-
pose applying NPS-Pruning to the parameters of the task
vector before integrating them into the pre-trained model, as
illustrated by the following equation:

θ̂ft = θpre + λ ·m⊙ τ (6)

Here, λ is a hyperparameter used to rescale the neural param-
eters within the pruned task vector.

Knowledge Fusion. The knowledge fusion problem in-
volves how to combine the finetuned model sets {θ1, . . . , θn}
to form a new model θm, without the need to retrain using the
initial training data for each task, and ensuring that θm can
simultaneously perform tasks {1, . . . , N}. The task vector-
based multi-task model merging method can be expressed
as

θm = θpre +
∑n

i=1
(λi ·mi ⊙ τi)/

∑n

i=1
λi (7)

Here, λi is the coefficient for a specific pruned task vec-
tor, which can be optimized using evolutionary strategies to
obtain an optimal set of {λ1, . . . , λn} with the maximum
validation accuracy for the final merged model.

Knowledge Compression. Pruning fine-tuned models is
an effective strategy for compressing checkpoints. By em-
ploying sparsity masks on model weights and storing only
the masked weights, we can maintain the models’ full perfor-
mance while significantly reducing storage requirements.

In term of storage for {θt}Tt=1, we only need to store the
pre-trained model θpre, the task vectors τ , and the binary
masks m for each task. For multi-task evaluation, models
are reconstructed by adding only the important subsets of
task-specific vectors to the shared θpre:

θ̂ft1 , . . . , θ̂ftn = θpre + [m1 ⊙ τ1), . . . , (mn ⊙ τn] (8)

4 Experiment
4.1 Evaluation Settings
We expect that NPS-PRUNING will provide significant ben-
efits for developers in three main areas: First, it effectively
mitigates catastrophic forgetting in knowledge transfer sce-
narios. n experiments with multimodal large language models
(MLLMs) using the LLaVA framework, our approach pre-
served performance even at a sparsity level of 10%. This
highlights its effectiveness in mitigating catastrophic forget-
ting. Second, in knowledge fusion, NPS-PRUNING has been
evaluated across various scenarios, including different modal-
ities, domains, model sizes, fine-tuning methods, and large
language models. It consistently outperforms existing model
merging techniques. Lastly, for knowledge compression, we
compared our method against baselines by evaluating both
accuracy and storage cost across different task combinations
on vision benchmarks using ViT models, where our approach
demonstrated superior performance. More information on
implementation details can be found in the supplemental
materials Appendix C.



Table 1: Average performance and H-score on LLaVA-1.5 (Vicuna-7B) with a sparsity ratio r = 10%. “#Params" refers to
the number of parameters modified. The optimal and sub-optimal results are denoted by boldface and underlining.

Method #Params Pre-trained tasks Target task
VQAv2 GQA VizWiz SQA TextVQA POPE MM-Bench MM-Bench-CN Flickr30k Avg Hscore

Zero-shot - 78.52 61.97 50.0 70.17 58.28 85.97 64.78 58.51 18.62 42.33 29.05

Fine-tune 2.7B 68.61 49.01 27.24 63.86 40.03 79.73 59.02 50.17 77.1 56.42 63.40
DARE[ICML24] 273M 78.12 59.25 48.9 64.92 57.17 84.86 64.77 57.47 25.6 60.12 36.64

Grafting[ICML23] 273M 74.48 58.28 43.16 66.82 52.56 80.35 64.52 55.49 58.2 61.56 60.03
Model Tailor[ICML24] 273M 73.21 52.49 42.28 67.15 43.89 82.88 63.40 56.15 75.4 61.87 66.94

NPS-PRUNING (ours) 273M 74.3 52.52 43.1 66.12 43.93 83.23 64.52 57.51 76.2 62.38 67.54

Method #Params Pre-trained tasks Target task
VQAv2 GQA VizWiz SQA TextVQA POPE MM-Bench MM-Bench-CN OKVQA Avg Hscore

Zero-shot - 78.52 61.97 50.0 70.17 58.28 85.97 64.78 58.51 0.14 27.94 33.09

Fine-tune 2.7B 69.1 48.61 30.35 41.03 42.13 72.33 32.79 43.47 46.27 47.34 46.87
DARE[ICML24] 273M 78.04 61.65 49.19 67.58 57.91 86.44 65.03 58.16 0.83 58.31 1.64

Grafting[ICML23] 273M 75.23 58.42 43.27 67.26 53.51 85.29 62.16 54.42 30.8 58.93 41.25
Model Tailor[ICML24] 273M 76.25 60.39 46.49 69.51 54.88 85.44 63.32 54.21 38.1 60.95 47.71

NPS-PRUNING (ours) 273M 76.81 60.94 48.1 71.32 56.34 87.23 64.77 57.5 38.4 62.38 48.38

4.2 Baseline Methods
Our baselines are categorized into three primary areas:
knowledge transfer for mitigating catastrophic forgetting,
knowledge fusion, and compression. For knowledge trans-
fer, we compare our approach against Standard Fine-tuning,
Model Grafting (Panigrahi et al. 2023), Drop & Rescale
(DARE) (Yu et al. 2023b), and Model Tailor (Zhu et al.
2024). In the domain of knowledge fusion, we assess vari-
ous methods such as Simple Averaging (Wortsman et al.
2022), Fisher Merging (Matena and Raffel 2022), Reg-
Mean (Jin et al. 2023), Task Arithmetic (Ilharco et al.
2023a), Ties-Merging (Yadav et al. 2024), and Consen-
sus Merging (Wang et al. 2024). Notably, Task Arithmetic,
Ties-Merging, Consensus Merging, and our proposed NPS-
PRUNING are all based on task vectors, making them training-
free and lightweight. For knowledge compression, we eval-
uate our method against several model merging techniques
and their combinations with Talls Mask (Wang et al. 2024).
Detailed information on these baselines can be found in the
supplemental materials Appendix D.

4.3 Results on Knowledge Transfer
Following (Liu et al. 2023a), we conduct knowledge
transfer experiments using LLaVA-1.5 (Vicuna-7B). Both
the projector and LLM parameters of the model are fine-
tuned. The pre-trained datasets include VQAv2 (Goyal et al.
2017), GQA (Hudson and Manning 2019), Vizwiz (Gu-
rari et al. 2018), SQA (Lu et al. 2022), TextVQA (Singh
et al. 2019), POPE (Li et al. 2023c), MM-Bench (Liu et al.
2023b), and MM-Bench-CN (Zhang et al. 2023b). We then
fine-tune LLaVA on Flickr30k (Young et al. 2014) and
OKVQA (Marino et al. 2019) tasks, which are not included
in the model’s pre-training datasets. The performance of the
fine-tuned model is evaluated on these and other datasets.

For evaluation, we use both the arithmetic and harmonic
means (Zhu et al. 2024) of performance across pre-trained
and target tasks, referred to as average performance and H-
score. As shown in Table 1, our NPS-PRUNING method ef-
fectively mitigates catastrophic forgetting in MLLMs, outper-
forming current fine-tuning and forgetting mitigation tech-

niques at a sparsity level of 10%. While further fine-tuning
to improve performance on new tasks often deteriorates the
model’s effectiveness on pre-trained tasks, NPS-PRUNING
successfully balances targeted optimization with the preserva-
tion of pre-trained performance. It achieves superior average
metrics, improving by 1.5% and 1.4%, respectively, demon-
strating its capability to enhance task-specific performance
while maintaining foundational robustness.

4.4 Results on Knowledge Fusion
To empirically validate the effectiveness of NPS-PRUNING,
we conducted extensive experiments to compare it with ex-
isting model merging techniques. Our results highlight the
advantages of our approach across both cross-task and cross-
domain perspectives. Detailed information about the datasets
used is provided in the supplemental material Appendix E.

Merging NLP Models. In the NLP domain, we follow the
experimental setup outlined in (Yadav et al. 2024). We use the
T5-base and T5-large models (Raffel et al. 2020), fine-tuning
each on seven diverse tasks, including question answering,
paraphrase identification, sentence completion, and corefer-
ence resolution. Table 2 demonstrates that merging fully fine-
tuned T5-base and T5-large models using NPS-PRUNING
results in an average performance improvement of 2.1% for
T5-base and 1.6% for T5-large across the seven tasks.

Merging PEFT Model Adapters. Based on (Yadav et al.
2024), we explore parameter merging for efficient fine-tuning
using the (IA)3 method (Liu et al. 2022b), a type of Parameter-
Efficient Fine-Tuning (PEFT) that extends base model activa-
tions with learned vectors. We use the T0-3B model (Sanh
et al. 2022) and fine-tune (IA)3 on training sets from eleven
diverse datasets, including tasks such as sentence completion
and natural language inference. We utilize prompt templates
from the Public Prompt Pool (P3 (Bach et al. 2022)) to con-
vert dataset examples into a text-to-text format, with each
label as a different string. For the (IA)3 experiments, we re-
port median scores across all templates for each dataset. As
shown in Table 2, NPS-PRUNING improves average perfor-
mance by 1.4% across 11 tasks compared to the top baseline.



Table 2: Comparison of different model merging methods across various fine-tuning configurations and modalities, with average
performance reported for different tasks. The optimal and sub-optimal results are denoted by boldface and underlining.

Settings (→) 7 NLP Tasks 11 PEFT Tasks 3 LLM Tasks 8 Vision Tasks 5 Emotion Domains
Method (↓) T5-Base T5-Large (IA)3 LLaMa2 ViT-B/32 ViT-L/14 T5-Base RoBERTa-Base
Fine-tuned 83.1 88.9 71.4 40.4 90.5 94.2 51.38 49.38
Multitask 83.6 88.1 73.1 - 88.9 93.5 47.75 49.06

Averaging[ICML22] 65.3 54.7 57.9 30.3 65.8 79.6 23.2 38.3
Fisher Merging[NeurIPS22] 68.3 68.7 62.2 - 68.3 82.2 26.1 38.1

RegMean[ICLR23] 72.7 79.8 58.0 - 71.8 83.7 34.2 38.4
Task Arithmetic[ICLR23] 73.0 80.2 63.9 30.4 70.1 84.5 33.6 38.3
Ties-Merging[NeurIPS23] 73.6 80.3 66.8 34.2 73.6 86.0 34.5 39.7
Consensus TA[ICML24] 73.1 80.2 65.8 33.5 73.5 85.8 33.9 39.2

Consensus TIES[ICML24] 73.4 80.5 66.6 34.4 73.3 86.2 34.4 39.8
NPS-PRUNING (ours) 75.7 (+2.1) 82.1 (+1.6) 68.2 (+1.4) 35.3 (+0.9) 76.5 (+3.0) 87.6 (+1.4) 35.7 (+1.3) 40.9 (+0.9)
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Figure 5: Averaged normalized accuracy and storage cost versus the number of tasks on computer vision benchmarks. Our
proposed NPS-PRUNING method consistently preserves initial performance across various task combinations while significantly
compressing the fine-tuned checkpoints.

Merging LLMs. In our experiment, we combined three
specialized large language models built on the Llama-2-7b
architecture (Touvron et al. 2023), each focusing on a dif-
ferent area: Chinese language proficiency1, mathematical
reasoning (Yu et al. 2023a)2, and code generation (Rozière
et al. 2023)3. We assessed the performance of each model
using specific benchmarks: CMMLU (Li et al. 2023a) for
Chinese, GSM8K (Cobbe et al. 2021) for mathematics, and
HumanEval (Chen et al. 2021) for code generation. As indi-
cated in Table 2, our method NPS-PRUNING resulted in an
average performance improvement of 0.9%.

Merging Vision Models. For image classification tasks,
we adhered to the experimental setup outlined by (Ilharco
et al. 2022, 2023a). We employed two versions of the CLIP
model (Radford et al. 2021), specifically using ViT-B/32 and
ViT-L/14 as visual encoders. The visual encoders were fine-
tuned on eight tasks sourced from (Radford et al. 2021), while
the text encoder remained unchanged. This approach covered
a range of classification domains, such as remote sensing,
traffic classification, and satellite imagery recognition. Our

1https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
2https://huggingface.co/meta-math/MetaMath-7B-V1.0
3https://huggingface.co/qualis2006/llama-2-7b-int4-python-

code-18k

method achieved a 3.0% improvement over the top baseline
on ViT-B/32 and a 1.4% improvement on ViT-L/14.

Merging Emotion Domains. We carried out further exper-
iments to evaluate the effectiveness of various methods in
merging five domain-specific emotion classification models.
In line with the methodology of RegMean (Jin et al. 2023), we
used the Roberta-base and T5-base models, along with five
preprocessed datasets from (Oberländer and Klinger 2018).
Our analysis presents the average accuracy on in-domain
datasets achieved by different model merging techniques. Ad-
ditionally, we conducted experiments with multiple random
seeds and reported the average results across five seeds. As
detailed in Table 2, our approach surpasses the best baseline
by 1.3% on Roberta-base and 0.9% on T5-base.

4.5 Results on Knowledge Compression
We conducted experiments using eight different ViT-B/32
models, each fine-tuned on distinct vision tasks, and tested
the performance and compression efficiency across various
numbers of tasks. For each task quantity, five random combi-
nations were selected, and the average results were reported.
As shown in Figure 8, both TALL-Mask and NPS-PRUNING
maintain around 99% normalized accuracy across all cases,
with virtually no performance degradation as the number of
tasks increases.
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Figure 6: Searching for the weights of neural parameters
across different task vector subspaces.

In terms of storage, our method significantly reduces costs
compared to storing individual fine-tuned models, with the
savings becoming more pronounced as the number of tasks
increases. The TALL Mask + TIES method consistently con-
sumes a high amount of storage, even when the number of
tasks is small. In contrast, our approach requires storage that
increases gradually with the number of tasks. While methods
like Task Arithmetic have lower storage demands, they suf-
fer from a noticeable drop in accuracy. Overall, our method
achieves an optimal balance on the Pareto front, effectively
retaining performance while minimizing total storage costs.
More results about knowledge compression are provided in
supplemental materials Appendix A.

5 Analysis
Search Visualization. To better understand the workflow
of our method, we visualized the pruning process for a ViT-
B/32 model fine-tuned on the SVHN dataset, setting the
sparsity ratio to 0.1. We divided the task vector into five
subspaces based on their magnitude values and then contin-
uously updated the weights of these subspaces to explore
higher validation scores. It can be observed that the weight
values stabilize as the number of generations increases, as
shown in Figure 6, and the pruned model’s accuracy also
gradually converges to a stable value, as shown in Figure 7.

Time complexity. The total time required for the overall
NPS-PRUNING strategy is

Ttotal = Generations × (Tpruning + Tvalidate) (9)

where generations represents the number of generations
needed for searching, which is a pre-set value and varies
with different experiment settings. The pruning time mainly
depends on the number of model parameters and the size
of the model population, while the validation time primarily
depends on the volume of inference data and the inference
speed. We have organized and reported the number of gen-
erations and time required in our experiments, as shown in
Appendix B of the supplemental materials: (Additional anal-
ysis: Time cost, Hyperparameters, Ablation).
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Figure 7: Performance convergence of the pruned fine-tuned
model as the number of generations increases.

Advantages.
• Gradient-Free Operation: This method operates without

gradient calculations, making it lightweight and minimiz-
ing memory usage. This is particularly advantageous in
environments with limited computational resources.

• Practicality and Ease of Implementation: The method
is straightforward to implement and integrates easily into
various applications.

• Broader Applicability and Stable Performance: Unlike
theoretical pruning methods, this approach is more ver-
satile and provides consistent results across a range of
applications.

Disadvantages.
• Dependence on Pretrained Models: The method is de-

signed to work with pretrained models. If there is a signif-
icant disparity between the fine-tuned model and the orig-
inal model, it can pose challenges for knowledge transfer,
fusion, and compression.

• Validation Data Requirements: Effective implementa-
tion requires additional validation data, and its quantity
and quality can impact the success of the search process
and overall results.

• Time Cost of Search Process: The search process incurs
a time cost, which can vary based on the complexity of
the task. This should be considered when evaluating the
method’s efficiency.

6 Conclusions
This study highlights the significance of pruning fine-tuned
models when pretrained model is available. We introduce
Neural Parameter Search (NPS) as an efficient technique for
this task. Our approach facilitates multi-task model fusion,
compression, and robust knowledge transfer by searching
neural parameters within task vector subspaces. Experimental
results demonstrate that NPS-Pruning significantly enhances
performance across various knowledge transfer scenarios.
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Overview
This paper enhances the pruning efficiency of fine-
tuned models through Neural Parameter Search
and applies this approach to various scenarios, in-
cluding knowledge transfer, fusion, and compres-
sion, with the assistance of pre-trained models. The
appendix is organized based on the following con-
tributions:

• Appendix A (Additional Results) provides addi-
tional experimental results on knowledge com-
pression as well as task-level results from the
knowledge fusion experiments.

• Appendix B (Additional Analysis) includes abla-
tion studies, hyperparameter analysis, and time
cost evaluation for the search process.

• Appendix C (Implementation Details) outlines
the computational resources and runtimes, along
with the training details and evaluation metrics.

• Appendix D (Baselines) provides a detailed
baseline description.

• Appendix E (Datasets) provides a detailed
dataset description.

A Additional Results
A.1 Additional Results on Compression

In our NLP experiments, particularly in the knowl-
edge compression scenarios involving large lan-
guage models, we present additional results, as
shown in Appendix Tables 3. These results demon-
strate that our method maintains the performance
of the previous best compression approach, TALLS
Mask+TIES, while significantly reducing storage
consumption.

A.2 Comprehensive Task-Level Results

We present task-level results for all knowledge
fusion experiments in Section 4.4. Detailed task-
level outcomes for T5-Base, T5-Large (Raffel et al.
2020), IA3 (Liu et al. 2022b), ViT-B/32, and ViT-
L/14 (Dosovitskiy et al. 2021) are provided in Ap-
pendix Tables 4, 5, 6, 7, and 8, respectively. We
also provide radar charts to compare the results of
merging vision tasks, as illustrated in Appendix
Figure 8. While previous baseline methods exhibit
inconsistent performance and struggle with certain



Table 3: Comparison of different knowledge compression methods across various modalities, with average performance reported
for different tasks. The optimal results are denoted by boldface. Please refer to Section 4.5 for more details.

Settings (→) 7 NLP Tasks 3 LLM Tasks 8 Vision Tasks
T5-Base T5-Large LLaMa2 ViT-B/32 ViT-L/14

Method (↓) Acc.(%)↑ Bits(Gb)↓ Acc.(%)↑ Bits(Gb)↓ Acc.(%)↑ Bits(Gb)↓ Acc.(%)↑ Bits(Gb)↓ Acc.(%)↑ Bits(Gb)↓
Fine-tuned 83.1 47.8 88.9 169.1 40.4 629.6 90.5 23.3 94.2 79.1
Zero-shot 53.5(64.4) 7.1 53.1(59.7) 25.1 15.3(37.9) 215.6 62.3(68.8) 3.6 74.5(79.1) 11.0

Task Arithmetic[ICLR23] 73.0(87.8) 7.1 80.2(90.2) 25.1 30.4(75.2) 215.6 70.1(77.5) 3.6 84.5(89.7) 11.0
TIES[NeurIPS23] 73.6(88.6) 7.1 80.3(90.3) 25.1 34.2(84.7) 215.6 73.6(81.3) 3.6 86.0(91.3) 11.0

Talls+TIES[ICML24] 82.6(99.4) 15.2 88.3(99.3) 54.3 39.5(97.8) 442.3 90.2(99.7) 7.1 93.6(99.4) 23.1
NPS-PRUNING (ours) 82.9(99.8) 11.1 88.8(99.9) 39.2 40.5(100.2) 276.3 90.9(100.4) 5.9 94.3(100.1) 18.0

tasks, our method proves to be more robust, deliv-
ering near-optimal results across all tasks.

B Additional Analysis
B.1 Ablation Studies
Our method incorporates several key factors, in-
cluding the number of subspaces, the volume of
the calibration dataset, and the sparsity of pruning
levels. We conducted ablation studies on these ele-
ments, with the results presented in Appendix Ta-
ble 9, 10, 11. Specifically, we tested our approach
on knowledge fusion across eight ViT models for
vision tasks.

B.2 Hyperparameters
Due to the hyperparameter sensitivity in task
vector-based model merging methods, we provide
the optimal values of λ and r as determined by
our experiments, as outlined in Tab. 12. For Task
Arithmetic, we explored λ within the range of 0.2
to 1.5, using a step size of 0.1. In the cases of
TIES-Merging and NPS-PRUNING, we varied the
mask ratios r across {0.05, 0.1, 0.2}, while λ was
searched within the range of 0.8 to 2.5 with a step
size of 0.1. For knowledge compression using NPS-
PRUNING, we fixed the ratio r at 0.05 to minimize
storage costs.

B.3 Time cost
The total time required for the overall NPS-
PRUNING strategy is

Ttotal = Generations × (Tpruning + Tvalidate) (10)

where generations represents the number of gen-
erations needed for searching, which is a pre-set
value and varies with different experiment settings.
The pruning time mainly depends on the number of

model parameters and the size of the model popu-
lation, while the validation time primarily depends
on the volume of inference data and the inference
speed. We have organized and reported the num-
ber of generations and the time required for each
task in Appendix Table 13. As shown, our method
typically requires only a few hours (2-6 hours) to
complete, even for large language models.

C Implementation details
C.1 Computational Resources and Runtimes
Our experiments were conducted on Nvidia A6000
GPUs with 48GB of RAM. Depending on the
dataset size, fine-tuning the T5-Base and T5-Large
models for single tasks took between 15 minutes
and 2 hours, while fine-tuning the multitask check-
point took around eight hours. The fine-tuned (IA)3

models were provided by Yadav et al. (2024).4. We
also used vision models ViT-B/32 and ViT-L/14
as provided by Ilharco et al. (2023a).5. Merge ex-
periments were highly efficient, with evaluations
for RoBerta-base, T5-Base, T5-Large, ViT-B/32,
and ViT-L/14 models taking less than 2 minutes.
However, two specific experiments required more
time: (1) Evaluating (IA)3 models took about one
hour for 11 datasets due to the need to use multiple
templates from prompt sources and compute me-
dian results across them. (2) Validation on LLMs
(LLaMa2) was also slow, usually requiring about
40 minutes for evaluating 3 datasets.

C.2 Training details
We trained the T5-base and T5-large models for
up to 75,000 steps, using a batch size of 1024 and
a learning rate of 0.0001. Early stopping with a

4https://github.com/prateeky2806/ties-merging
5https://github.com/mlfoundations/task_vectors\#checkpoints
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Figure 8: Test set performance when merging ViT-B/32 and ViT-L/14 models on eight image classification tasks.

Table 4: Test set performance when merging T5-base models on seven NLP tasks. Please refer to Section 4.4 for more details.

Task(→) Test Set Performance
Method(↓) Average paws qasc quartz story_cloze wiki_qa winogrande wsc

Zeroshot 53.5 49.9 35.8 53.3 48.1 76.2 50 61.1
Fine-tuned 83.1 94.6 98.4 81.1 84.9 95.8 64.5 62.5

Multitask 83.6 94 97.9 82.5 86.7 95 64.1 65.3
Averaging[ICML22] 65.3 67.4 83.4 60.8 50.3 93.2 51.7 50.0

Fisher Merging[NeurIPS22] 68.3 66.7 85.6 63.5 57.1 90.1 54.2 60.8
RegMean[ICLR23] 72.7 77.2 93.8 63.6 64.6 90.4 58.4 60.7

Task Arithmetic[ICLR23] 73.0 69.6 91.5 67.3 76.1 91.3 58.3 56.9
Ties-Merging[NeurIPS23] 73.6 82.2 84.8 66.1 73.5 87.0 60.2 61.1

Consensus Ties[NeurIPS23] 73.4 82.3 84.5 65.7 73.4 86.8 60.3 60.5
NPS-PRUNING (ours) 75.6 79.1 93.3 65.9 76.2 89.9 59.9 63.9

Table 5: Test set performance when merging T5-large models on seven NLP tasks. Please refer to Section 4.4 for more details.

Task(→) Test Set Performance
Method(↓) Average paws qasc quartz story_cloze wiki_qa winogrande wsc

Zeroshot 53.1 58.2 54.2 54.1 54.3 70.9 49.2 63.9
Fine-tuned 88.9 94.5 98.3 88.5 91.4 96.2 74.5 79.2

Multitask 88.1 94.2 98.5 89.3 92 95.4 73.5 73.6
Averaging[ICML22] 54.7 57.2 26.4 71.4 54.8 86.6 50.2 36.1

Fisher Merging[NeurIPS22] 68.7 68.4 83 65.5 62.4 94.1 58.2 49.2
RegMean[ICLR23] 79.8 83.9 97.2 73.2 82.6 94.1 63.2 64.4

Task Arithmetic[ICLR23] 80.2 77.6 96.6 75.1 85.6 93.8 61.8 70.8
Ties-Merging[NeurIPS23] 80.3 78.2 97.5 72.8 83.7 94.5 64.5 70.8

Consensus Ties[NeurIPS23] 80.5 78.4 97.7 72.6 83.7 94.8 64.6 71.2
NPS-PRUNING (ours) 82.1 82.1 98.4 72.3 85.7 94.1 67.2 75.0

patience of 5 was employed to prevent overfitting.
Training was conducted in bfloat16 to conserve
GPU memory, with a sequence length capped at

128 tokens. For the PEFT configuration of the (IA)3

approach on the T0-3B model, the batch size was
set to 16 for training and 32 for evaluation, while



Table 6: Test set performance when merging (IA)3 models on eleven tasks. Please refer to Section 4.4 for experimental details.

Task(→) Natural Language Inference Sentence Completion Co-reference WSD
Method(↓) Average RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Zeroshot 53.1 58.2 54.2 35.5 34.4 34.4 75.0 39.2 86.5 63.9 51.2 51.9
Fine-Tuned 71.4 82.7 95.8 70.4 46.5 53.0 85.3 44.4 95.0 65.3 75.1 71.7

Averaging[ICML22] 57.9 81.2 58.3 43.3 39.1 40.0 80.9 40.1 92.4 52.8 53.8 55.0
Fisher Merging[NeurIPS22] 62.2 83.3 83.3 45.9 41.0 42.2 83.1 42.2 94.1 58.3 56.7 54.2

RegMean[ICLR23] 58 81.2 58.3 43.3 39.2 40.2 80.9 40.1 92.5 53.5 53.8 55
Task Arithmetic[ICLR23] 63.9 74.1 83.3 60.8 49.4 50.0 87.5 41.5 95.3 49.3 62.8 49.1
Ties-Merging[NeurIPS23] 66.8 78.6 87.5 66.6 51.3 51.5 81.7 43.2 90.9 57.6 67.0 58.4
Consensus Ties[ICML24] 66.6 78.5 87.3 66.4 51.1 51.2 81.6 43.4 90.2 57.3 67.1 58.3
NPS-PRUNING (ours) 68.2 80.1 83.5 67.3 51.2 49.8 88.4 42.6 92.8 61.9 67.5 64.8

Table 7: Test set performance when merging ViT-B/32 models on 8 vision tasks. Please refer to Section 4.4 for more details.

Task(→) Test Set Performance
Method(↓) Average SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Individual 90.5 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4
Multitask 88.9 74.4 77.9 98.2 98.9 99.5 93.9 72.9 95.8

Averaging[ICML22] 65.8 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1
Fisher Merging[NeurIPS22] 68.3 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9

RegMean[ICLR23] 71.8 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52
Task Arithmetic[ICLR23] 70.1 63.8 62.1 72 77.6 74.4 65.1 94 52.2
Ties-Merging[NeurIPS23] 73.6 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2

Consensus Ties[NeurIPS23] 73.3 64.5 63.0 74.1 78.5 83.0 71.1 96.9 55.8
NPS-PRUNING (ours) 76.5 66.8 65.4 78.5 79.2 86.5 77.1 98.1 59.3

Table 8: Test set performance when merging ViT-L/14 models on 8 vision tasks. Please refer to Section 4.4 for more details.

Task(→) Test Set Performance
Method(↓) Average SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD
Fine-tuned 94.2 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1

Multitask 93.5 90.6 84.4 99.2 99.1 99.6 96.3 80.8 97.6
Averaging[ICML22] 79.6 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8

Fisher Merging[NeurIPS22] 82.2 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70
RegMean[ICLR23] 83.7 73.3 81.8 86.1 97 88 84.2 98.5 60.8

Task Arithmetic[ICLR23] 84.5 74.1 82.1 86.7 93.8 87.9 86.8 98.9 65.6
Ties-Merging[NeurIPS23] 86 76.5 85 89.4 95.9 90.3 83.3 99 68.8

Consensus Ties[NeurIPS23] 86.2 76.6 85.2 89.5 96.3 90.4 83.6 99.1 68.8
NPS-PRUNING (ours) 87.6 76.8 86.1 89.5 96.5 88.4 91.1 98.5 73.7

Table 9: The performance of NPS-PRUNING in knowledge
fusion on vision tasks across varying volumes of calibration
datasets.

Volume Ties-Merging 1/4 1/2 1

ViT-B/32 73.6 75.9 76.3 76.5

ViT-L/14 86.0 87.1 87.5 87.6

maintaining a learning rate of 0.0001. The early
stopping patience was extended to 10 due to the
model’s complexity. We didn’t use any learning
rate scheduler or weight decay during training. For
large language models, we used fine-tuned check-

Table 10: The performance of NPS-PRUNING in knowledge
fusion on vision tasks across varying numbers of subspaces.

Numbers Ties-Merging 1 2 4 8

ViT-B/32 73.6 74.8 75.6 76.2 76.5

ViT-L/14 86.0 86.9 87.3 87.5 87.6

points from Huggingface6.
In the cross-domain merging experiments, we

fine-tuned the RoBERTa-base model with an initial
learning rate of 1e-5 and the T5-base model at
1e-4, using the AdamW optimizer. The learning

6https://huggingface.co/



Table 11: The performance of NPS-PRUNING in knowledge
fusion on vision tasks with different sparsity pruning ratios r.

Ratios 0.03 0.05 0.1 0.2 0.3

ViT-B/32 75.8 76.5 76.3 75.2 72.1

ViT-L/14 86.9 87.6 87.2 86.5 83.4

rate was gradually increased during the first 6%
of training steps, then linearly decreased to zero.
Both models were trained with a batch size of 16
over 30 epochs for emotion classification, with
performance evaluated at the end of each epoch,
resuming from the best checkpoint.

C.3 Evaluation Metrics
Normalized Accuracy. We report both normalized
and absolute accuracies. Normalization is based on
the accuracy of the individual fine-tuned models.

Normalized Acc. =
1

N

N∑
n=1

acc
x∼µn

[fmerged(x)]

acc
x∼µn

[ffine-tuned(x)]

(11)

H-Score. To rigorously evaluate our method’s abil-
ity to mitigate catastrophic forgetting in MLLMs,
we use two key metrics: Average Performance and
the H-score (Zhu et al. 2024). The H-score, a novel
metric, provides a balanced assessment by calculat-
ing the harmonic mean between the average perfor-
mance on original tasks, Avg(Porigin), and on target
tasks, Avg(Ptarget). The formula for the H-score is
as follows:

PH =
2× Avg(Porigin)× Avg(Ptarget)

Avg(Porigin) + Avg(Ptarget)
. (12)

The H-score was introduced to avoid overempha-
sizing the performance of original tasks, especially
as their number grows.

Storage Cost. This section show the calculation of
the storage cost for each method in Section 4.5
and Appendix A Tab. 3. Let N be the number of
tasks, P be the number of all parameters, P ′ be
the number of trainable parameters in the model,
and F be the number of frozen parameters in the
model. Assuming one float parameter takes 32 bits,
for each method, their respective storage cost for
T tasks is calculated as:

• Fine-tuned models: 32(NP ′+F ). 32NP ′ is for
storing T trainable parameters and 32F is for
storing frozen parameters.

• Task arithmetic: 32P ; Stores a single model.
• Ties-merging: 32P ; Stores a single model.
• Consensus Ties: 32P ; Stores a single model.
• Zero-shot: 32P ; Stores a single model.
• TALL Mask + Ties: (64+N)P ′ +32F ; 64P ′ +
32F is for storing zeroshot model and multi-task
vector, while NP ′ is for storing T binary masks.

• NPS-PRUNING: 32P + (r ∗ 32 + 1)NP ′; r is
the sparsity pruning ratio.

D Baseline details
This section provides a detailed baseline descrip-
tion. Our experiments encompass seven compari-
son methods:
• Individual means that each task uses an inde-

pendent fine-tuned model, which has no interfer-
ence between tasks, but cannot perform multiple
tasks simultaneously.

• Traditional MTL collects the original training
data of all tasks together to train a multi-task
model. It can be used as a reference upper bound
for model merging work.

• Weight Averaging is the simplest method of
model merging, which directly averages the
parameters of multiple models using θm =∑n

t=1 θt/n, calculating the element-wise mean
of all individual models. It can be used as a
lower bound for model merging. (Choshen et al.
2022; Wortsman et al. 2022).

• Fisher Merging (Matena and Raf-
fel 2022) calculates the Fisher infor-
mation matrix (Fisher 1922) F̂t =
Ex∼DtEy∼pθt (y|x)∇θt(log pθt(y|xt))

2 to mea-
sure the importance of each parameter when
merging models for task t, where and model
merging is performed according to the guidance
of this importance.

• RegMean (Jin et al. 2023) imposes a con-
straint when merging models, that is, the L2

distance between the merged model’s and
the individual models’ activations. It com-
putes a least-squares solution as θm =



Table 12: λ and pruning ratio r for NPS-PRUNING

Task (→) 7 NLP Tasks 11 PEFT Tasks 3 LLM Tasks 8 Vision Tasks
Method (↓) T5-Base T5-Large (IA)3 LLaMa2 ViT-B/32 ViT-L/14

Task Arithmetic[ICLR23] [λ] 0.4 0.5 0.5 0.3 0.3 0.3
Ties-Merging[NeurIPS23] [λ, r] [1.7, 0.1] [2.4, 0.05] [1.7, 0.1] [1.0, 0.1] [1.0, 0.1] [1.1, 0.05]
NPS for fusion (ours) [λ, r] [1.9, 0.05] [2.2, 0.05] [1.8, 0.1] [0.9, 0.1] [1.2, 0.05] [1.2, 0.05]

NPS for compression (ours) [r] 0.05 0.05 - 0.05 0.05 0.05

Table 13: Time Costs for NPS-PRUNING.

Task (→) 7 NLP Tasks 11 PEFT Tasks 3 LLM Tasks 8 Vision Tasks
Method (↓) T5-Base T5-Large (IA)3 LLaMa2 ViT-B/32 ViT-L/14

Time for Pruning 5 secs 9 secs 1 secs 113 secs 4 secs 7 secs
Time for Validation 4 mins 7 mins 15 mins 12 mins 6 mins 9 mins

Generations 30 50 20 20 30 30
Total Time for NPS-PRUNING 126 mins 358 mins 300 mins 278 mins 183 mins 273 mins

(
∑n

t=1X
T
t Xt)

−1
∑n

t=1(X
T
t Xtθt), where Xt is

the input activation of the corresponding layer.
• Task Arithmetic (Ilharco et al. 2023a) first de-

fines the concept of “task vectors” and merges
these vectors into a pre-trained model to execute
multi-task learning. The model is produced by
scaling and adding the task vectors to the initial
model as θm = θinit + λ ∗

∑n
t=1 τt.

• Ties-Merging (Yadav et al. 2024) further solves
the task conflict problem in Task Arithmetic (Il-
harco et al. 2023a). It eliminates redundant pa-
rameters and resolves symbol conflicts through
three steps: Trim, Elect Sign, and Disjoint
Merge.

• AdaMerging automatically learns a merging
coefficient for each layer of each task vector in
Task Arithmetic (Ilharco et al. 2023a).

• LoraHub (Huang et al. 2023) employs Low-
rank Adaptations to dynamically combine task-
specific modules for cross-task generalization,
and adapts to new tasks by configuring θ′ =∑K

k=1 wk · θk.
• DARE (Yu et al. 2023b) sets the majority of

delta parameters to zero and rescale the rest by
θ′ = θ · (1/(1− p)) where p is the proportion of
delta parameters dropped, therefore efficiently
reduces parameter redundancy.

E Datesets details

This section provides a detailed dataset descrip-
tion for our experiments.

NLP Tasks. Following TIES-Merging (Yadav
et al. 2024), we choose seven datasets for
merging NLP models: question answering
(QASC (Khot et al. 2020), WikiQA (Yang, Yih,
and Meek 2015), and QuaRTz (Tafjord et al.
2019)), paraphrase identification (PAWS (Zhang,
Baldridge, and He 2019)), sentence completion
(Story Cloze (Sharma et al. 2018)), and corefer-
ence resolution (Winogrande (Sakaguchi et al.
2021) and WSC (Levesque, Davis, and Morgen-
stern 2012)).

PEFT Models. Following TIES-Merging (Ya-
dav et al. 2024), we use eleven datasets in-
cluding sentence completion (COPA (Roem-
mele, Bejan, and Gordon 2011), H-SWAG
(Zellers et al. 2019), and Story Cloze (Sharma
et al. 2018) datasets), natural language infer-
ence (ANLI (Nie et al. 2020), CB (Marneffe,
Simons, and Tonhauser 2019), and RTE (Gi-
ampiccolo et al. 2007)), coreference resolution
(WSC (Levesque, Davis, and Morgenstern 2012)
and Winogrande (Sakaguchi et al. 2021)), and
word sense disambiguation (WiC (Pilehvar and
Camacho-Collados 2019)).

Vision Tasks. Following Task Arithmetic (Il-
harco et al. 2023a), we study multi-task model
merging on eight image classification datasets
below. Stanford Cars (Krause et al. 2013) is
a car classification dataset consisting of 196
classes of cars. DTD (Cimpoi et al. 2014) is
a texture classification dataset comprising 47



classes. EuroSAT (Helber et al. 2019) comprises
10 classes of geo-referenced satellite images.
GTSRB (Stallkamp et al. 2011) includes 43
classes of traffic signs. MNIST (LeCun 1998)
features grayscale images of handwritten dig-
its across 10 classes. RESISC45 (Cheng, Han,
and Lu 2017) encompasses 45 classes of re-
mote sensing image scenes. SUN397 (Xiao et al.
2016) consists of 397 classes of scene images.
Lastly, SVHN (Netzer et al. 2011) encompasses
10 classes of real-world digital classification im-
ages.

Table 14: Statistics of emotion classification datasets.

Train Dev Test

In-domain
DialyDialog 72,085 10,298 20,596
CrowdFlower 27,818 3,974 7,948
TEC 14,735 2,105 4,211
Tales-Emotion 10,339 1,477 2,955
ISEAR 5,366 766 1,534

LLMs.
– CMMLU (Li et al. 2023a) is a comprehensive

Chinese evaluation benchmark specifically de-
signed to assess language models’ knowledge
and reasoning abilities in a Chinese context. It
covers 67 topics ranging from basic subjects
to advanced professional levels.

– GSM8K (Cobbe et al. 2021) is a collection of
8.5K high-quality, linguistically varied math
word problems from grade school, crafted by
skilled human authors. The solutions predomi-
nantly require executing a series of basic arith-
metic operations (+, −, ×, ÷) to derive the
final answer.

– HumanEval (Chen et al. 2021) is a dataset for
evaluating code generation ability, containing
164 manually crafted programming problems
covering aspects such as language understand-
ing, reasoning, algorithms, and simple mathe-
matics.

Emotion Classification. In order to investigate
the performance of the sentiment classification
task, following RegMean (Jin et al. 2023), we

selected a diverse and challenging set of datasets.
Among them, DailyDialogs (Li et al. 2017),
CrowdFlower, TEC (Mohammad 2012), Tales-
Emotion (Alm, Roth, and Sproat 2005), and
ISEAR (Scherer and Wallbott 1994) is utilized
to train domain-specific model. For evaluation,
we focus exclusively on the fundamental emo-
tions: anger, disgust, fear, joy, sadness, and sur-
prise. A detailed overview of the datasets and
statistics is provided in Tab. 14.
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